Indo—Finnish Collaboration in Education & Science
Facts about India

- Population: 1.373 billion (and growing)
- Languages: There are 351 languages spoken in India, but Hindi and English are the country’s official languages.
- Currency: Indian National Rupee (₹)
- Political system: Federal Parliamentary Democratic Republic
- Current Government (key parts): The Bharatiya Janta Party (BJP) leads the country at the moment. It is the country's largest political party in terms of representation in the national parliament and state assemblies and is the world's largest party in terms of primary membership
- Religions: Hinduism, Islam, Buddhism, Jainism, and Sikhism among others
India’s Young Population

- India has a young population of over 600 million people and is estimated to see a steady increase in the coming decade as well. Here’s a graph that shows the Indian age pyramid.
Facts about India - Economy

• **GDP + GDP / capita:** $2.972 trillion ($ 2,041 per Capita)

• **Size of the economy** (in comparison to BRIC):
 - Brazil: $6.826 trillion
 - Russia: $1.578 trillion
 - China: $14.140 trillion

• **Economic growth:** 6.6% per annum

• **Import, export:** The total value of exports (FOB) is US$ 294,364 million.
 The total value of imports (CIF) is US$ 444,052 million.

• **Main industries:** Iron & Steel, Textiles, Jute, Sugar, Cement, Paper, Petrochemical, Automobile, Information Technology (IT), and Banking & Insurance.

• **Main trading partners:** United States, United Arab Emirates, China, Hong Kong, Singapore
India: Culture and Education

India since the start has been a multi-religious, pluralist society. Multiculturalism is one of India’s defining factors and what weaves the various ethnic groups together are common traditions and practices. For long, India has also been a practitioner of gender traditions that prefer males but one can notice fewer biases, and more and more participation of women in all sectors including education and science. India is one of the few countries that still strongly continues tradition despite many modern introductions as well.

The education system in India could be defined as a mix of its own traditional Gurukul system and the modern education system introduced in the Colonial era. India has a strong connection to the UK education system and one can often get a glimpse of that via the active flow of students from India to the UK and even basic education guidelines. An average of 16,550 students and researchers go to UK every year from India as well.
Finland and India

- **Diplomatic ties:** India and Finland have shared 70 years of diplomatic ties

- **Most recent / significant high level meetings:** Dr. Subrahmanyam Jaishankar, Minister of External Affairs of India visited Finland in October and met President Sauli Niinistö and Pekka Haavisto, Minister for Foreign Affairs.

- Mr Pekka Haavisto, Minister for Foreign Affairs visited India in November and met Dr. Subrahmanyam Jaishankar, Minister of External Affairs of India and Nirmala Sitharaman, Finance Minister of India, also IIT Madras.

- Mr. Timo Harakka, Minister of Employment visited India in November and met Deputy Chief Minister for Higher Education, IT, Biotechnology, Science & Technology, Mr. Ashwat Narayan

- **Size of the trade:** $862.29 million average

- **Main export items from India:** Electronic goods, mineral fuels and mineral oils, readymade garments, cotton including accessories, pharmaceuticals & fine chemicals, articles of iron and steel, machinery and instrument, coffee, rubber, iron and steel, organic chemicals and nuclear reactors, boilers, machinery and mechanical appliances and parts thereof.

- **Major imports of India from Finland:** Electrical machinery and equipment, nuclear reactors, boilers, machinery and mechanical appliances, paper and paper board, iron and steel, pulp of wood or of other fibrous cellulosic material, pulp and waste paper, vehicles and transport equipment etc.
Indian education system at a glance

INDIA’S INBOUND AND OUTBOUND DEGREE-SEEKING STUDENTS

Inbound: 44,766
Outbound: 277,387

WES Document Requirements

Secondary Education
- Final examination certificate (HSC, AISSC or any other standard XII certificate) – sent directly by the examinations board

State Boards of Technical Education
- Diploma (final or provisional) – submitted by the student
- Statement of marks – sent directly by the examining board

Higher Education
- Annual mark sheets (official academic records) – sent directly by the degree-awarding university
- Final or Provisional Degree Certificate – submitted by the student
- Documents must be issued by the university or autonomous college. Documents from affiliated colleges are insufficient and need to be accompanied by university-issued mark sheets.
Indian basic education – key facts

• Government funding: Total: $59.9 billion (4.6 % GDP)
• Over 1.6 million schools and growing in India

Enrollment rate

<table>
<thead>
<tr>
<th>Level</th>
<th>All Categories</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Total</td>
<td>Male</td>
<td>Female</td>
<td>Total</td>
</tr>
<tr>
<td>Primary (I-V)</td>
<td>66873</td>
<td>62250</td>
<td>129123</td>
<td>13274</td>
<td>12469</td>
<td>25743</td>
</tr>
<tr>
<td>Upper Primary (VI-VIII)</td>
<td>34720</td>
<td>32874</td>
<td>67594</td>
<td>6750</td>
<td>6427</td>
<td>13177</td>
</tr>
<tr>
<td>Elementary (I-VIII)</td>
<td>101593</td>
<td>95124</td>
<td>196717</td>
<td>20024</td>
<td>18896</td>
<td>38920</td>
</tr>
<tr>
<td>Secondary (IX-X)</td>
<td>20547</td>
<td>18598</td>
<td>39145</td>
<td>3824</td>
<td>3487</td>
<td>7311</td>
</tr>
<tr>
<td>I-X</td>
<td>122140</td>
<td>113722</td>
<td>235862</td>
<td>23848</td>
<td>22383</td>
<td>46231</td>
</tr>
<tr>
<td>Senior Secondary</td>
<td>13002</td>
<td>11733</td>
<td>24735</td>
<td>2240</td>
<td>2047</td>
<td>4287</td>
</tr>
<tr>
<td>I-XII</td>
<td>135142</td>
<td>125455</td>
<td>260597</td>
<td>26088</td>
<td>24430</td>
<td>50518</td>
</tr>
</tbody>
</table>

Literacy Rate

<table>
<thead>
<tr>
<th>Census year</th>
<th>Persons</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>18.3</td>
<td>27.2</td>
<td>8.9</td>
</tr>
<tr>
<td>1961</td>
<td>28.3</td>
<td>40.4</td>
<td>15.4</td>
</tr>
<tr>
<td>1971</td>
<td>34.5</td>
<td>46.0</td>
<td>22.0</td>
</tr>
<tr>
<td>1981</td>
<td>43.6</td>
<td>56.4</td>
<td>29.8</td>
</tr>
<tr>
<td>1991</td>
<td>52.2</td>
<td>64.1</td>
<td>39.3</td>
</tr>
<tr>
<td>2001</td>
<td>64.8</td>
<td>75.3</td>
<td>53.7</td>
</tr>
<tr>
<td>2011</td>
<td>73.0</td>
<td>80.9</td>
<td>64.6</td>
</tr>
</tbody>
</table>

1951-1971: Age group 5 and above, 1981-2011: Age group 7 and above

Data Source: Office of the Registrar General & Census Commissioner, India
Indian Basic Education - Teachers

Number of teachers and Teacher Pupil Ratio

<table>
<thead>
<tr>
<th>Type of Institution</th>
<th>Number of Teachers</th>
<th>Pupil Teacher Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>2606120</td>
<td>23</td>
</tr>
<tr>
<td>Upper Primary</td>
<td>2612347</td>
<td>17</td>
</tr>
<tr>
<td>Secondary</td>
<td>1431591</td>
<td>27</td>
</tr>
<tr>
<td>Senior Secondary</td>
<td>2041864</td>
<td>37</td>
</tr>
<tr>
<td>Higher Education#</td>
<td>1518813</td>
<td>24</td>
</tr>
</tbody>
</table>

- There are three levels of teaching degrees in India: a Diploma, Bachelor’s, and Master’s in Education. If one would like to teach primary school, they will need a minimum of a Diploma (D.Ted.). If one would like to teach secondary school, they’ll need a minimum of a Bachelor’s (B.Ed.). A Master’s (M.Ed.) is usually only required for specialized subjects or promotions. The D.Ted. and B.Ed. programs are generally two years. M.Ed. programs are usually one year.
- Each degree program has different qualifications. To enter a D.Ted., one will need to have passed the 12th standard (graduated from senior secondary school) with the minimum qualification. You’re required to have a Bachelor’s of Arts or Sciences (B.A. or B.S.) to enroll in a B.Ed. course. Having a B.Ed. is a prerequisite for getting an M.Ed.
- Teacher recruitment in India at the primary and secondary levels is tied to state and national eligibility testing. One must pass the Central Teacher Eligibility Test (CTET) to qualify to teach in a government-owned school and some private institutions. The National Council for Teacher Education (NCTE) offers preparatory curriculums for the exam and determines the minimum eligibility requirements for each year.
Indian basic education – Ministries involved

- **Ministry of Human Resource Development** (earlier known as the Ministry of Education) looks after education as a whole in India with two departments functioning under it — **Department of School Education and Literacy and the Department of Higher Education.**

- The department is divided into eight bureaus, and most of the work of the department is handled through over 100 autonomous organisations under these bureaus.

- University and Higher Education; Minorities Education
- Technical Education
- Administration and Languages
- Distance Education and Scholarships
- UNESCO, International Cooperation, Book Promotion and Copyrights, Education Policy, Planning and Monitoring
- Integrated Finance Division.
- Statistics, Annual Plan and CMIS
- Administrative Reform, North Eastern Region, SC/ST/OBC
Indian basic education – Key legislation

• The State shall provide free and compulsory education to all children of the age of six to fourteen years in a such manner as the State may, by law, determine (Constitution of India)

• The State shall promote, with special care, the education and economic interests of the weaker sections of the people, and in particular of the Scheduled Castes and Scheduled Tribes, and shall protect them from social injustice and all forms of social exploitation.

• India established compulsory education in 1 April 2010
Indian basic education – recent policies & trends

- The DNEP 2019 was one of the first introduced by the government which took over this May in India.
- Seeks to align education with the global sustainable development goals.
- Alleviation of inequality, engage girls with education
- Focus on high quality research. Liberal arts approach in higher education
- Nationalism as part of education is also a trend that has come up strongly in the past decade with a stronger focus on India’s history, culture, values, freedom struggle and more. Apart from fact, Indian educationists have often cited the inclusion of religious texts as part of education to instill a sense of pride and to strengthen the future generations’ connect with the country’s rich past.
Education as business

- India has the world’s largest population of about 500 million in the age bracket of 5-24 years.
- The public education sector in India is estimated at US$ 91.7 billion in FY18 and is expected to reach US$ 101.1 billion in FY19.
- Private education on the other hand is estimated to be one of the main businesses with about 200 billion+ USD.
- As many Indians go to foreign shores for quality education, the market for foreign universities is very present in India. The government is also encouraging FDI in this sector to improve the quality of education in the country. 100% FDI is allowed in this sector as long as the rules and regulations are met.
Indian basic education – key needs & challenges

- Gender disparity
- Regional disparity
- Better facilities for rural areas
- Public / private disparity
 - Better K12 Schools — private
 - Better HEIs – public
- Teacher commitment & quality (related to salaries, respect, education & training)
Vocational Education in India

• State & Central Universities offer vocational educational courses via Community Colleges, technical and non-technical institutions

• All courses aligned to National Skills Qualification Framework (NSQF)

Challenges

• Nascent stage of skill education

• Skill education not embedded in general education

• Skill education is not aspirational

Initiatives

• Govt. funding to colleges providing vocational education

• BA/Bcom/BSc programs embedded with skill education and on the job training

• Graduates have opportunity for OJT under apprenticeship

Focus areas

1. IT 4. Healthcare 7. Food Processing
2. Retail 5. Green jobs 8. Beauty & Wellness
10. Agriculture

Directory of recognized vocational institutions

• https://www.aicte-india.org/sites/default/files/Vocational_Approved_0.pdf
• https://www.ugc.ac.in/skill/pdf/List_of_(B.Voc.).pdf
• https://www.ugc.ac.in/skill/pdf/Kaushal_List_recommended.pdf

Possibilities of collaboration

• Improvement of guidelines and processes

• Digital learning innovations in VET

• Development of standards & curriculum for future skills

Focus areas

1. IT 4. Healthcare 7. Food Processing
2. Retail 5. Green jobs 8. Beauty & Wellness
10. Agriculture

Directory of recognized vocational institutions

• https://www.aicte-india.org/sites/default/files/Vocational_Approved_0.pdf
• https://www.ugc.ac.in/skill/pdf/List_of_(B.Voc.).pdf
• https://www.ugc.ac.in/skill/pdf/Kaushal_List_recommended.pdf

Possibilities of collaboration

• Improvement of guidelines and processes

• Digital learning innovations in VET

• Development of standards & curriculum for future skills
Indian Higher Education

- 3rd largest higher education system in world - 36.64 mln students enrolled
Indian Higher Education – Top Institutes

Times Higher Ranking – Indian Colleges and Institutes

<table>
<thead>
<tr>
<th>Rank Range</th>
<th>Institute Name</th>
<th>Country</th>
<th>Students</th>
<th>Rating</th>
<th>Int'l.</th>
<th>Students : Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>301–350</td>
<td>Indian Institute of Science India</td>
<td>India</td>
<td>4,128</td>
<td>9.6</td>
<td>1%</td>
<td>23 : 77</td>
</tr>
<tr>
<td>301–350</td>
<td>Indian Institute of Technology Ropar</td>
<td>India</td>
<td>1,119</td>
<td>7.6</td>
<td>0%</td>
<td>13 : 87</td>
</tr>
<tr>
<td>351–400</td>
<td>Indian Institute of Technology Indore</td>
<td>India</td>
<td>1,128</td>
<td>9.7</td>
<td>0%</td>
<td>17 : 83</td>
</tr>
<tr>
<td>401–500</td>
<td>Indian Institute of Technology Bombay</td>
<td>India</td>
<td>10,267</td>
<td>16.1</td>
<td>1%</td>
<td>19 : 81</td>
</tr>
<tr>
<td>401–500</td>
<td>Indian Institute of Technology Delhi</td>
<td>India</td>
<td>7,284</td>
<td>14.8</td>
<td>1%</td>
<td>20 : 80</td>
</tr>
<tr>
<td>401–500</td>
<td>Indian Institute of Technology Kharagpur</td>
<td>India</td>
<td>9,167</td>
<td>12.3</td>
<td>0%</td>
<td>18 : 82</td>
</tr>
<tr>
<td>501–600</td>
<td>Institute of Chemical Technology</td>
<td>India</td>
<td>2,146</td>
<td>18.2</td>
<td>0%</td>
<td>34 : 66</td>
</tr>
<tr>
<td>501–600</td>
<td>Indian Institute of Technology Gandhinagar</td>
<td>India</td>
<td>1,222</td>
<td>11.2</td>
<td>0%</td>
<td>22 : 78</td>
</tr>
<tr>
<td>501–600</td>
<td>Indian Institute of Technology Roorkee</td>
<td>India</td>
<td>7,561</td>
<td>16.4</td>
<td>2%</td>
<td>16 : 84</td>
</tr>
<tr>
<td>601–800</td>
<td>Amrita Vishwa Vidyanandham</td>
<td>India</td>
<td>14,689</td>
<td>11.9</td>
<td>12%</td>
<td>n/a</td>
</tr>
<tr>
<td>601–800</td>
<td>Banaras Hindu University</td>
<td>India</td>
<td>14,953</td>
<td>11.3</td>
<td>3%</td>
<td>10 : 90</td>
</tr>
<tr>
<td>601–800</td>
<td>University of Delhi</td>
<td>India</td>
<td>24,547</td>
<td>23.0</td>
<td>1%</td>
<td>47 : 53</td>
</tr>
<tr>
<td>World Rank</td>
<td>Institution*</td>
<td>By location</td>
<td>National/Regional Rank</td>
<td>Total Score</td>
<td>Score on Alumni</td>
<td>Score on Award</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>401-500</td>
<td>Indian Institute of Science</td>
<td>India</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>501-600</td>
<td>Indian Institute of Technology Madras</td>
<td>India</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>601-700</td>
<td>Indian Institute of Technology Kanpur</td>
<td>India</td>
<td>3-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>601-700</td>
<td>University of Calcutta</td>
<td>India</td>
<td>3-4</td>
<td>11.2</td>
<td>9.3</td>
<td>0</td>
</tr>
<tr>
<td>701-800</td>
<td>Indian Institute of Technology Bombay</td>
<td>India</td>
<td>5-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>701-800</td>
<td>Indian Institute of Technology Delhi</td>
<td>India</td>
<td>5-8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>701-800</td>
<td>Indian Institute of Technology Kharagpur</td>
<td>India</td>
<td>5-8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>701-800</td>
<td>University of Delhi</td>
<td>India</td>
<td>5-8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>801-900</td>
<td>Indian Institutes of Science Education and Research (ISERs)</td>
<td>India</td>
<td>9-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>801-900</td>
<td>Jawaharlal Nehru University</td>
<td>India</td>
<td>9-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>901-1000</td>
<td>All India Institute of Medical Sciences</td>
<td>India</td>
<td>11-16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>901-1000</td>
<td>Anna University</td>
<td>India</td>
<td>11-16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>901-1000</td>
<td>Banaras Hindu University</td>
<td>India</td>
<td>11-16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>901-1000</td>
<td>Bharathiar University</td>
<td>India</td>
<td>11-16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>901-1000</td>
<td>Indian Institute of Technology Roorkee</td>
<td>India</td>
<td>11-16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>901-1000</td>
<td>Velora Institute of Technology</td>
<td>India</td>
<td>11-16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Indian Education Diaspora

- India has an average of **277,387** outbound students for Higher education each year.
- The main target countries for Indian students are **Canada, USA, UK, Germany, Australia** but Indians are now opening up to other countries in search for better quality of education, better research funding and, of course, cheaper education options.
- While there isn’t an exact number to this, surveys indicate that **roughly 63% of students come back** to India after studying abroad. Either to continue studying in India, seek jobs or simply because the country they were studying in did not have opportunities for them.
Indian Higher Education – key needs & challenges

- 650 million citizens under age of 25
 - Biggest education demand in the history of humankind
 - How to educate them for proper skills?
 - How to get them employed?
- Academic vs. skills education
 - Biased perception, biased quality
- Vocational education: relevance, quality, company connections
Indian Science & Innovation

- The history of science and technology in the Indian subcontinent begins with prehistoric human activity in the Indus Valley Civilization to early states and empires.[1] Following independence, science and technology in the Republic of India has included automobile engineering, information technology, communications as well as space, polar, and nuclear sciences.

- **Nobel Prize winners from India:** C. V. Raman, Har Gobind Khorana, Subrahmanyan Chandrasekhar, Venki Ramakrishnan

- **Key Inventions and Discoveries:** Gravity, Ammonium nitrite, synthesis in pure form, Ashtekar variablesBhatnagar-Mathur Magnetic Interference BalanceBhabha scattering: Bose–Einstein statistics, condensate, Boson, Braunstein-Ghosh-Severini Entropy, Chandrasekhar limit and Chandrasekhar number, Galena Detector, HeliumMahalanobis distance, Mercurous Nitrite, Ramachandran plot, Ramachandran map, and Ramachandran anglesRaman effect, Raychaudhuri equation among others

- **Strong areas:** Agriculture, Healthcare, Space Research, and Nuclear Power

- **Key institutes:** IITs, AIIMS, BITS, TIFR, IISC, JNCASR among others

Government Initiatives

In February 2018, the Union Cabinet has approved implementation of 'Prime Minister Research Fellows (PMRF)' scheme, which will promote the mission of development through innovation, at a total cost of Rs 1,650 crore (US$ 245.94 million) for a period of seven years beginning 2018-19. In February 2018, Union Government of India announced grant of Rs 1,000 crore (US$ 155.55 million) for the second phase of Impacting Research Innovation and Technology (IMPRINT), a fund created by Department of Science and Technology and Ministry of Human Resource and Development. The Government of India granted Atal Innovation Mission with US$ 24.84 million will boost the academicians, entrepreneurs and researchers to work towards innovation. In July 2018, Atal Innovation Mission along with MyGov launched “Innovate India Platform” with the aim of providing a common point for all the innovation happening across India.

The Union Budget 2019-20

The allocation to the Department of Science and Technology (DST) has been increased by 4.03 per cent to Rs 5,321.01 crore (US$ 737.49 million) as against the previous budget. Under the Union Budget 2019-20, the Government of India announced the largest ever allocation of Rs 12,796 crore (US$ 1.77 billion) to the Ministry of Science and Technology. The Department of Atomic Energy has been allocated Rs 16,725.51 crore (US$ 2.32 billion), an increase of 19.71 per cent against the previous budget. The Ministry of Earth Sciences was allocated Rs 1,901.76 crore (US$ 263.58 million), which is an increase of 5.65 per cent as against the previous budget.

Key Policies

Big Science Infra: The Square Kilometre Array, International Thermonuclear Experimental Reactor, An International Facility for Antiproton and Iron Research, Pacific Rim Application and Grid Middleware Assembly, Geoscience Network
Indian Science & Innovation - Funding

- Government uses 0.6% of GDP for Scientific Research funding
- **Key funders:** All India Council for Technical Education (AICTE), Council of Scientific and Industrial Research (CSIR), Department of Biotechnology (DBT) Department of Science and Technology (DST), Technology Information, Forecasting and Assessment Council (TIFAC), Indian Council of Medical Research (ICMR). Gujarat Council on Science and Technology (GUJCOST), Indian National science Academy (INSA)

- **Key areas in Scientific and Engineering research:** Mega Facilities for Basic Research, Innovation in Science Pursuit for Inspired Research (INSPIRE), programme R&D Infrastructure (FIST, SAIFs, PURSE, SATHI), Programme for Science Students Swarnajayanti Fellowships, National Science & Technology Management Information System (NSTMIS), Science and Engineering Research Board (SERB), Cognitive Science Research Initiative (CSRI), Impacting Research Innovation and Technology (IMPRINT), VAJRA (Visiting Advanced Joint Research) Faculty Scheme
The Key features of the STI policy 2013

• Promoting the spread of scientific temper amongst all sections of society.
• Enhancing skills for applications of science among the young from all social sectors.
• Making careers in science, research and innovation attractive enough for talented and bright minds.
• Establishing world class infrastructure for R&D for gaining global leadership in some select frontier areas of science.
• Positioning India among the top five global scientific powers by 2020 (by increasing the share of global scientific publications from 3.5% to over 7% and quadrupling the number of papers in top 1% journals from the current levels).
• Linking contributions of Science Research and innovation system with the inclusive economic growth agenda and combining priorities of excellence and relevance.
• Creating an environment for enhanced private sector participation in R & D.
• Enabling conversion of R & D output with societal and commercial applications by replicating hitherto successful models, as well as establishing of new PPP structures.
• Seeking S&T based high risk innovation through new mechanisms.
• Fostering resource optimized cost-effective innovation across size and technology domains.
• Triggering in the mindset & value systems to recognize respect and reward performances which create wealth from S&T derived knowledge.
• Creating a robust national innovation system.
TATA Corporation in Education

The Tata group continues to be inspired by this vision of their Founder—that nation-building must begin with the educational upliftment of its people. Whether it is through their establishing of great institutes of learning, or the scope of Tata companies' programmes to make education accessible to the most marginalised communities, they are committed to the idea of universal education.

Some institutes by the TATA corporation:

• Indian Institute of Science (IISc)
• Tata Institute of Fundamental Research (TIFR)
• Tata Institute of Social Sciences (TISS)
• National Centre for the Performing Arts (NCPA)
Corporate Social Responsibility Program

• India is the first country in the world to make Corporate Social Responsibility (CSR) mandatory, following an amendment to the Companies Act, April 2014. Businesses can invest their profits in areas such as education, poverty, gender equality, and hunger as part of any CSR compliance.

• The amendment notified in the Companies Act, 2013 requires companies with a net worth of INR 500 crore (US $70 million) or more, or an annual turnover of INR 1000 crore (US $140 million) or more, or net profit of INR 5 crore (US $699,125) or more, to spend 2 percent of their average net profits of three years on CSR.

• Prior to that, the CSR clause was voluntary for companies, though it was mandatory to disclose their CSR spending to shareholders. CSR includes but is not limited to the following:
CSR Trends in India

Listed companies in India spent INR 10,000 crore (US$1.4 billion) in various programs ranging from educational programs, skill development, social welfare, healthcare, and environment conservation, while the Prime Minister’s Relief Fund saw an increase of 139 percent in CSR contribution over last one year.

The education sector received the maximum funding (38 percent of the total) followed by hunger, poverty, and healthcare (25 percent), environmental sustainability (12 percent), rural development (11 percent).

• Examples of CSR in India

Tata Group
The Tata Group conglomerate in India carries out various CSR projects, most of which are community improvement and poverty alleviation programs. Through self-help groups, it has engaged in women empowerment activities, income generation, rural community development, and other social welfare programs. In the field of education, the Tata Group provides scholarships and endowments for numerous institutions.

The group also engages in healthcare projects, such as the facilitation of child education, immunization, and creation of awareness of AIDS. Other areas include economic empowerment through agriculture programs, environment protection, providing sports scholarships, and infrastructure development, such as hospitals, research centers, educational institutions, sports academy, and cultural centers.

Ultratech Cement
Ultratech Cement, India’s biggest cement company is involved in social work across 407 villages in the country aiming to create sustainability and self-reliance. Its CSR activities focus on healthcare and family welfare programs, education, infrastructure, environment, social welfare, and sustainable livelihood.

The company has organized medical camps, immunization programs, sanitization programs, school enrollment, plantation drives, water conservation programs, industrial training, and organic farming programs.

Mahindra & Mahindra
Indian automobile manufacturer Mahindra & Mahindra (M&M) established the K. C. Mahindra Education Trust in 1954, followed by Mahindra Foundation in 1969 with the purpose of promoting education. The company primarily focuses on education programs to assist economically and socially disadvantaged communities.

Its CSR programs invest in scholarships and grants, livelihood training, healthcare for remote areas, water conservation, and disaster relief programs. M&M runs programs such as Nanhi Kali focusing on education for girls, Mahindra Pride Schools for industrial training, and Lifeline Express for healthcare services in remote areas.

ITC Group
ITC Group, a conglomerate with business interests across hotels, FMCG, agriculture, IT, and packaging sectors has been focusing on creating sustainable livelihood and environment protection programs. The company has been able to generate sustainable livelihood opportunities for six million people through its CSR activities.

Their e-Choupal program, which aims to connect rural farmers through the internet for procuring agriculture products, covers 40,000 villages and over four million farmers. It’s social and farm forestry program assists farmers in converting wasteland to pulpwood plantations. Social empowerment programs through micro-enterprises or loans have created sustainable livelihoods for over 40,000 rural women.
Future opportunities – Education

• Finnish Schools (K-12)
• Finnish Curriculum & Pedagogy
• Teacher in-service training
 • train the trainers - Finnish experience
 • online elements
• Learning analytics
 • validation of the Finnish pedagogy (in Indian context)
• Learning environments
• School cleantech - AQ
Future opportunities – Higher Education

- Bachelor Students (especially Northern India)
 - skills education – UAS
 - company/working life oriented & connected
- Master students
 - universities
 - one calendar year programs (incl. summers)?
 - online pre/post study elements?
 - like in UK
- PhD students
 - joint PhD programs
Future opportunities – Higher Education

• Talent attraction events
 • IITs, top universities, NITs etc
 • Jointly with Business Finland
 • employment / studies
 • As thematic, regional or national clusters
Study & degree as a service

• Complete service pathway
 • Admission, residence permit, accommodation
 • Grants & financial advice
 • Cultural adaption, peer support, student clubs
 • Study counselling & support
 • Employment, entrepreneurship
 • Start-up support & funding schemes